Newsy

Naukowcy z UW tworzą sztuczną fotosyntezę. Chcą wykorzystać energię słoneczną do produkcji „paliwa przyszłości”

2017-11-21  |  06:00
Mówi:prof. Joanna Kargul
Funkcja:kierownik Laboratorium Fotosyntezy i Paliw Słonecznych
Firma:Centrum Nowych Technologii UW
  • MP4
  • Naukowcy z Centrum Nowych Technologii Uniwersytetu Warszawskiego prowadzą badania nad sztuczną fotosyntezą. Chcą dowiedzieć się, jak gospodarują energią organizmy poddawane działaniu ekstremalnych bodźców środowiskowych. W tym celu badają aparat fotosyntetyczny czerwonej mikroalgi, która potrafi przetrwać w warunkach podobnych do tych panujących na Ziemi kilka miliardów lat temu. Ich prace mogą pozwolić na sterowanie procesem fotosyntezy, co może przyczynić się np. do spopularyzowania paliwa wodorowego.

    Laboratorium Fotosyntezy i Paliw Słonecznych w Centrum Nowych Technologii UW od dwóch lat pracuje nad sztuczną fotosyntezą. Naukowcy badają aparat fotosyntetyczny czerwonej mikroalgi – jednokomórkowego krasnorostu o nazwie Cyanidioschyzon merolae, który świetnie prosperuje nawet w wyjątkowo niekorzystnych warunkach – podobnych do tych, które panowały na Ziemi kilkaset milionów lat temu. Wówczas atmosfera nie zawierała w ogóle wolnego tlenu.

    – Glon ten został wyizolowany z ekstremofilnych warunków, takich jak wysokozasiarczone kwaśne źródła wulkaniczne o wysokiej temperaturze. Żyje w bardzo niskim pH oraz w podwyższonej temperaturze. Podobne warunki panowały na początku życia na naszej planecie, dlatego bardzo nas interesuje, w jaki sposób ten glon sobie radzi pod względem metabolizmu i procesu fotosyntezy w warunkach tak nieprzyjaznych dla człowieka – mówi agencji informacyjnej Newseria Innowacje prof. Joanna Kargul, kierownik Laboratorium Fotosyntezy i Paliw Słonecznych z Centrum Nowych Technologii UW.

    Sztuczna fotosynteza polega na imitowaniu wczesnych procesów naturalnej fotosyntezy przy użyciu najprostszych substratów, takich jak woda i dwutlenek węgla. Cały proces jest napędzany energią słoneczną, podobnie jak w naturalnej fotosyntezie. W procesie naturalnej fotosyntezy pod wpływem absorbcji światła słonecznego następuje rozszczepienie cząsteczek wody do biologicznego "wodoru", czyli protonów i elektronów. Innymi produktami tej reakcji jest tlen cząsteczkowy, który zapewnia atmosferę tlenową na naszej planecie, a także węglowodany (glukoza).

    – Bez fotosyntezy nie byłoby życia na naszej planecie. Mówi się, że fotosynteza tlenowa, oksygeniczna - to Big Bang ewolucji, ponieważ po powstaniu atmosfery na naszej planecie, tempo ewolucji nabrało ogromnej prędkości. Rozwinęło się życie tlenowe, wielokomórkowe i biosfera, taka jaką ją w tej chwili znamy. To wszystko mogło zajść dzięki procesowi oksygenicznej fotosyntezy, którą zajmuje się moje laboratorium – tłumaczy prof. Joanna Kargul.

    Naukowcy z CeNT Uniwersytetu Warszawskiego prowadzą badania na jednokomórkowych mikroalgach, ponieważ te - w odróżnieniu od roślin wyższych - są hodowane w kontrolowanych warunkach: w stałej temperaturze, wilgotności i przy stałym natężeniu światła. Dzięki temu naukowcy mogą ściśle kontrolować warunki eksperymentalne.

    – Dodatkowym atutem pracy nad jednokomórkowymi glonami jest to, że możemy hodować bardzo duże objętości tych alg. W moim laboratorium mamy hodowlę do 20 litrów takich mikroorganizmów. W industrialnych aplikacjach algi hodowane są nawet w objętościach stulitrowych, zdarzają się również farmy alg w których objętości są naprawdę kolosalne. W naszym laboratorium hodujemy je w postaci dwudziestolitrowych zawiesin komórkowych – mówi prof. Joanna Kargul.

    Celem badań naukowców z Uniwersytetu Warszawskiego jest poznanie mechanizmów fotoprotekcji i gospodarki energią u organizmów, które są poddawane działaniu ekstremalnych bodźców środowiskowych. Może to stworzyć nowe możliwości sterowania fotosyntezą i znaleźć zastosowanie np. w rolnictwie.

    Poznanie mechanizmów działania fotosyntezy ma pozwolić na konstrukcję fotoogniw paliwowych zbudowanych z biologicznych katalizatorów do utleniania wody i wytwarzania tzw. paliw słonecznych (wodoru i odnawialnych paliw węglowych) pod wpływem absorpcji światła widzialnego. Te międzynarodowe, wysoko interdyscyplinarne badania, prowadzone są od 2011 r. - najpierw w ramach konsorcjum, które zrzeszało osiem najlepszych w Europie laboratoriów naturalnej i sztucznej fotosyntezy, a obecnie w formie bilateralnego projektu polsko-tureckiego GraphESol.

    – Atrakcyjność naszego podejścia badawczego polega na połączeniu naturalnej fotosyntezy z nowoczesnymi materiałami o bardzo atrakcyjnych właściwościach. Mówię tu o grafenie, który z całą pewnością jest materiałem przyszłości, mówi się, że nadchodzi era grafenowa. Obecnie żyjemy w erze krzemowej, natomiast era grafenowa jest tuż za rogiem – mówi prof. Joanna Kargul.

    Projekt dotyczący "charakterystyki struktury i funkcji aparatu fotosyntetycznego z ekstremofilnej czerwonej mikroalgi Cyanidioschyzon merolae" uzyskał z Narodowego Centrum Nauki finansowanie w wysokości niemal 1,7 mln zł w ramach konkursu Opus.

    Czytaj także

    Więcej ważnych informacji

    Jedynka Newserii

    Jedynka Newserii

    E-commerce

    Nowe technologie zacierają różnicę między tradycyjnymi a wirtualnymi zakupami. W innowacyjne systemy inwestują firmy odzieżowe i obuwnicze

    Sklepy odzieżowe i obuwnicze w coraz większym stopniu wykorzystują sztuczną inteligencję i uczenie maszynowe. W ten sposób mogą zmaksymalizować doświadczenie zakupowe użytkowników oraz usprawnić procesy sprzedaży za pomocą analiz predykcyjnych i sterowanych procesów sprzedaży. Inteligentni asystenci cyfrowi polecają klientom ubrania na podstawie ich wzrostu i wagi, autonomiczne szatnie same dostarczają wybraną odzież, zaś w sklepach obuwniczych, dzięki skanowi stopy w 3D, klient nie musi mierzyć butów, system sam znajdzie mu odpowiedni rozmiar w zależności od marki.

    Medycyna

    Sztuczne płuca ratują życie chorych na COVID-19. Zebrane w czasie pandemii doświadczenia posłużą opracowaniu nowoczesnych urządzeń medycznych

    Dzięki procedurze ECMO, czyli zewnątrzustrojowemu natlenianiu krwi, można uratować życie chorych na COVID-19, którym nie można już podłączyć respiratora. Leczenie to od lat jest znane w kardiochirurgii, ale jak twierdzą specjaliści, zastosowanie go w innej dziedzinie medycyny da dostęp do wiedzy, dzięki której najpóźniej za półtora roku powstaną nowe technologie medyczne. Potrzeba opracowania nowych procedur jest tym większa, że w wyniku pandemii znacznie pogorszyła się opieka nad pacjentami z zawałami serca.